

Lossy, Magnetically Loaded, Machinable Stock

for Round bar, Square bar and Sheet type

EC-SORB® MF

EC-SORB MF is a series of right magnetically loaded epoxy stock, which can be machined for use as absorbers, attenuators and terminations in waveguide, coaxial or stripline applications. With products such as these, it is necessary to be conversant with the dielectric and magnetic properties of the materials, which are listed in this technical bulletin, the values given are normalized with respect to free space, see Products table in last page.

Most of the definitions of several symbols and the details of formula in this application note are explained in later page, which is originated by Emerson & Cuming publication in 70s : “ENERGY PROPAGATION IN DIELECTRIC AND MAGNETIC” .

In this technical bulletin, M' is used for the real part of the Magnetic permeability and M'' for the Magnetic loss factor.

The definition of dB/CM (dB/IN) is included in reference, both in mathematical form and in word. The value is useful in comparing one material against another to determine which offers the most loss independent of interface reflection coefficients.

$|Z|/Z_0$, the normalized impedance magnitude ratio, can be used as a qualitative measure of the impedance match between free space and the material. An impedance ratio that is closest to 1 is the most desirable because at that ratio, the impedance match between the material and free space is perfect.

These characteristics are not in themselves directly applicable to the calculation of transmission and reflection coefficients as they are defined on point 3 & 4 of “Energy Propagation in Dielectric and Magnetic Material” . For these calculations, the complex dielectric constant ($K' - jK'' \tan D$) and complex magnetic permeability ($M' - jM'' \tan M$) are used as listed in the table.

Please refer the Product Type # in table. Some of them, we have asked Volumed MOQ.

The key factor of MF series, Attenuation at 10GHz is as follows,

MF	110	112	114	116	117	124	175	190
dB/CM	2.2	5.6	13.2	32	56	67	69	75
dB/ IN	5.6	14.2	33.5	81	142	170	175	190

Application at the low frequencies,

At radio frequencies, MF series have been used effectively as a high-Q inductor-core material in such devices as slug tuners. The material is useful also in many other magnetic components. Simple RF filters can be formed for example, by passing vacuum tube filament leads through small blocks of EC-SORB MF, or by casting appropriate sections of the material around such leads by using one of the electrically equivalent castable versions.

Physical Properties

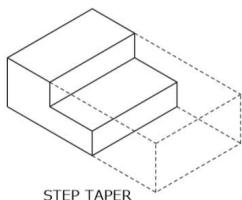
Service Temperature	< 180°C
Density	1.6-4.9 g/cc
Hardness Shore D	85°
Tensile Strength	55 MPa
Thermal Expansion per °C	~30 x 10 ⁻⁶
Thermal Conductivity	1.44 W/mK
Water Absorption % 24hours	< 0.3
Outdoor Exposure Tolerance	GOOD
Machinability	GOOD

Electrical Properties

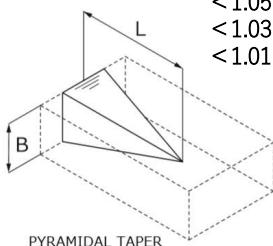
Volume Resistivity	> 10 ¹¹ ohm-cm
Dielectric Strength	> 25 volts/mil

Product Size ;

Sheets 30.5cm (12in) x 30.5cm (12in)
thicknesses 1.27cm, 1.91cm, 2.54cm, 3.81cm, 5.08cm (1/2in, 3/4in, 1in, 3/2in, 2in)

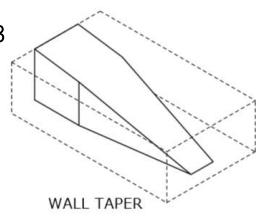

Bars Length 30.5cm
In squares 1.27cm, 1.91cm, 2.54cm, 3.81cm, 5.08cm

Rods Length 30.5cm
Diameters (cm) 0.64, 0.95, 1.27, 1.59, 1.91, 2.54, 5.08
(IN) 1/4, 3/8, 1/2, 5/8, 3/4, 1, 2,

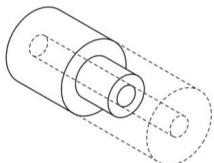

Other sizes, shapes, thickness and configurations are available on special order.

Termination Design Considerations :

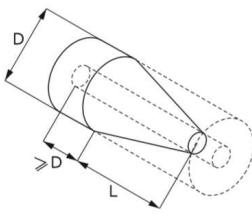
WAVEGUIDE TERMINATIONS


STEP TAPER

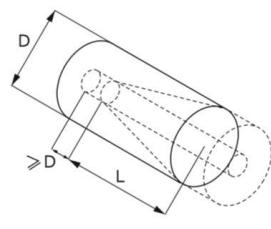
PYRAMIDAL TAPER


VSWR L (approx)

<1.05	1.5B
<1.03	3B
<1.01	10B



WALL TAPER


COAXIAL TERMINATIONS

STEP TAPER

$L \geq \lambda_0$ for $VSWR < 1.03$
CONICAL TAPER

$L \geq \lambda_0$ for $VSWR < 1.05$
WALL TAPER

The most widely used member of the EC-SORB MF series is 117. It is an excellent material to start experimentation. Most designs of termination and attenuating elements depend heavily upon cut-and-try procedures. A preliminary design is established by experience or rough estimates of probably satisfactory dimensions, a piece of EC-SORB MS is machined and tested for VSWR and/or attenuation and the design is then modified as required.

In coaxial, waveguide and strip-line terminations, either step-tapered or uniformly tapered configurations can be used.

Step-tapered terminations are narrow-banded and highly critical dimensionally. They are recommended only where essentially single frequency operation is anticipated. Increasing the number of steps beyond two can increase the usable band-width and such designs are helpful when limited length is available in the direction of propagation. Reproducibility of the performance of step-tapered terminations may be difficult because of their sensitivity to small changes in magnetic and dielectric properties.

Uniformly tapered terminations are generally preferred because of the low VSWR which is possible to achieve over a wide frequency range. Dimensions are reasonably non-critical and performance is reasonably insensitive to magnetic and dielectric properties. In general, the more gradual the taper, the lower the VSWR. A length-to-base-width ratio of 10 : 1 is highly desirable for VSWR as low as 1.01 over a full waveguide frequency band, particularly with materials having the higher value of M' and K' . A sufficiently long taper must be used so that very little energy reaches the base mounting plate where it can be reflected back into the line. The one-way attenuation should be at least 25dB for VSWR as low as 1.01.

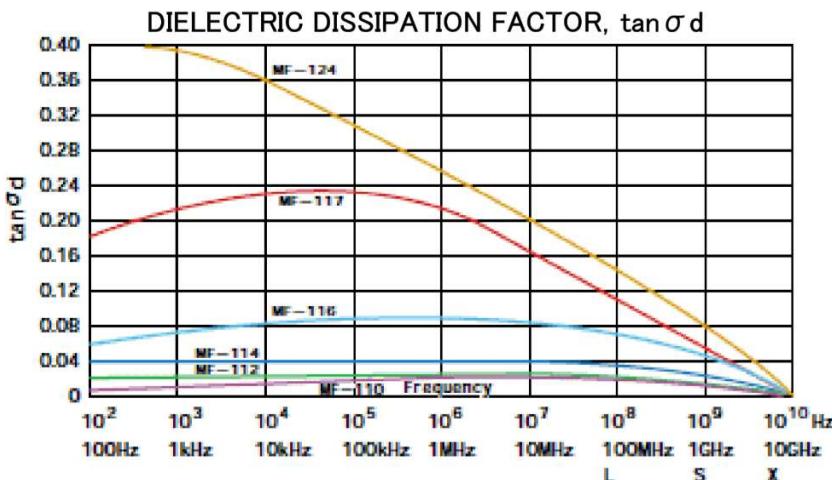
Wall-type uniform tapers offer maximum heat-transfer efficiency and are recommended for high-power applications.

Related Products

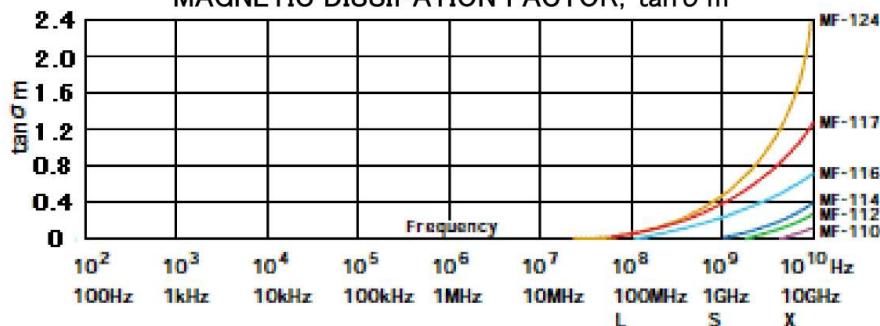
The following products have equivalent properties of EC-SORB MF series with the availability of high-temperature, castable and molding-powder.

EC-SORB MF500F :

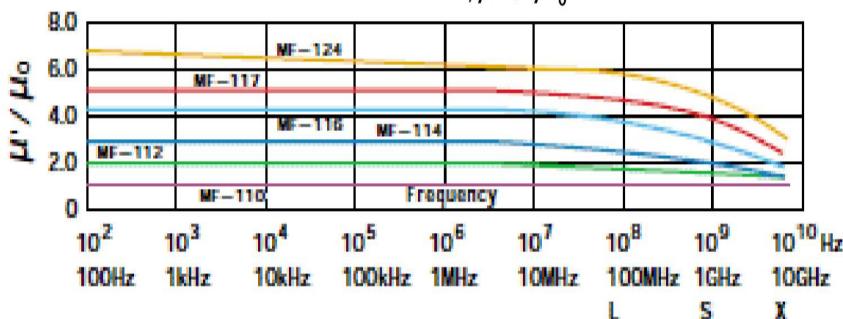
Increases temperature capability to 260 degC for MF110 through MF124 electrical properties. Sheet, bar and rod sizes as for EC-SORB MF

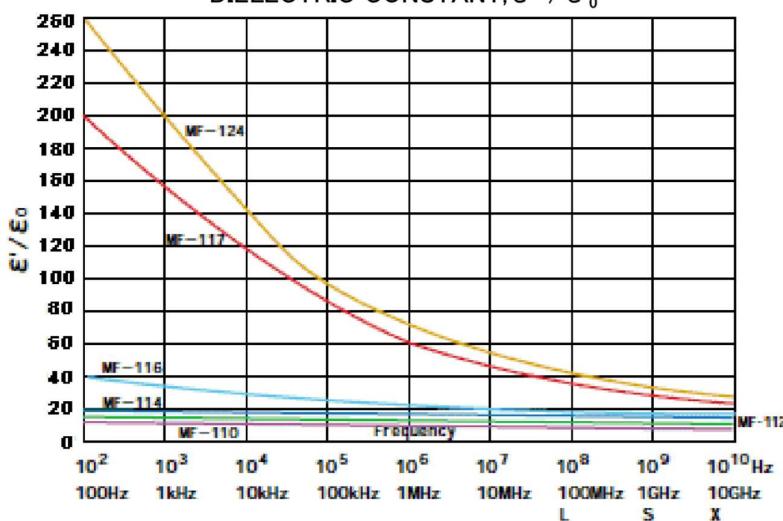

EC-SORB CR :

Epoxy casting-resin version for rigid shapes with electrical properties of EC-SORB MF. Good to 180 degC. For intricate shapes or cavity filling.


EC-SORB CR-S :

Castable RTV silicon rubber like EC-SORB CR. Electrical properties of EC-SORB MF117 and MF124 only. Flexible, Tough and capability to 260 degC.


Each for Response


MAGNETIC DISSIPATION FACTOR, $\tan \sigma m$

PERMEABILITY, μ' / μ_0

DIELECTRIC CONSTANT, ϵ' / ϵ_0

The significant features of the property table are :

1. In every case, K' decreases with increasing frequency.
2. Almost without exception, the dielectric loss $\tan \delta$ and dielectric loss factor decrease with increasing frequency, the exception occurs at the low end of the frequency band, and can be ignored in most applications.
3. The magnetic loading increases from a minimum in MF-110 to a maximum in MF-190. There is a corresponding increase in K' , K'' , M' , M'' , $\tan \delta$ and μ .
4. The 0 value in the table indicate that the number is less than 0.01.
5. The values given in the table and response graphs are nominal values and should not be used by customers in the writing of procurement specifications. If specifications are needed, the customers should consult with the Sales Dept.

The use of dielectric/magnetic properties for Quality Control, i.e., incoming or outgoing inspection, is not recommended, because the measurement of these properties is very time consuming and complicated. It is recommended to monitor the density.

Notes :

This information, while believed to be completely reliable, is not to be taken as warranty for which we assume legal responsibility nor as permission or recommendation to practice any patented invention without license. It is offered for consideration, investigation and verification.

The information on this data are provided for your Development, Research, Inspection, etc., we are pleased with your reference this data for your review.

< Table >

FREQUENCY (Hz)

Type #

	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10 ⁹	3x10 ⁹	8.6x10 ⁹	10 ¹⁰	1.8x10 ¹⁰	
MF - 110	K'	18	16	15	13	11	9.0	7.0	5.0	3.2	3.0	2.9	2.8
	TAN D	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.04	0.04
	K''	0.18	0.16	0.16	0.30	0.33	0.27	0.28	0.20	0.16	0.15	0.12	0.11
	M'	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.1	1.0	1.0	1.0	1.0
	TAN M	0	0	0	0	0	0	0	0	0	0.10	0.10	0.20
	M''	0	0	0	0	0	0	0	0	0	0.10	0.10	0.20
	dB/CM	0	0	0	0	0	0	0.01	0.09	0.26	2.0	2.2	6.6
	dB/IN	0	0	0	0	0	0	0.03	0.23	0.66	5.0	5.6	17
	Z /Z ₀	0.26	0.27	0.28	0.28	0.33	0.37	0.40	0.47	0.59	0.59	0.59	0.60
MF - 112	K'	20	18	16	14	12	10	8	6	5.2	5.0	4.8	4.6
	TAN D	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.04	0.03
	K''	0.40	0.36	0.48	0.42	0.36	0.40	0.32	0.24	0.26	0.25	0.19	0.14
	M'	2.0	1.9	1.8	1.7	1.6	1.5	1.5	1.4	1.4	1.1	1.1	1.0
	TAN M	0	0	0	0	0	0	0.01	0.02	0.03	0.22	0.23	0.26
	M''	0	0	0	0	0	0	0.02	0.03	0.04	0.24	0.25	0.26
	dB/CM	0	0	0	0	0	0	0.02	0.16	0.59	4.9	5.6	10.1
	dB/IN	0	0	0	0	0	0	0.05	0.41	1.5	12.4	14.2	25.7
	Z /Z ₀	0.32	0.32	0.34	0.35	0.37	0.39	0.43	0.48	0.52	0.47	0.48	0.47
MF - 114	K'	22	21	19	18	16	14	12	11	9.9	9.8	9.7	9.6
	TAN D	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.05	0.05
	K''	0.88	0.84	0.76	0.72	0.80	0.70	0.60	0.55	0.59	0.59	0.49	0.48
	M'	2.8	2.8	2.7	2.6	2.5	2.4	2.3	2.1	1.9	1.9	1.1	1.0
	TAN M	0	0	0	0	0	0	0.04	0.08	0.13	0.33	0.40	0.45
	M''	0	0	0	0	0	0	0.09	0.17	0.25	0.43	0.44	0.45
	dB/CM	0	0	0	0	0	0	0.04	0.57	2.2	10.8	13.2	24.9
	dB/IN	0	0	0	0	0	0	0.10	1.4	5.6	27.4	33.5	63.2
	Z /Z ₀	0.36	0.37	0.38	0.38	0.40	0.41	0.44	0.57	0.44	0.37	0.35	0.34
MF - 116	K'	40	35	30	26	23	20	18	17	16.5	16.2	16.0	15.8
	TAN D	0.06	0.06	0.07	0.07	0.08	0.09	0.08	0.07	0.06	0.07	0.06	0.05
	K''	2.4	2.1	2.1	1.8	1.8	1.8	1.4	1.2	0.99	1.1	0.98	0.79
	M'	4.6	4.5	4.4	4.4	4.3	4.2	4.0	3.0	2.8	1.6	1.5	1.4
	TAN M	0	0	0	0	0	0	0.04	0.13	0.21	0.47	0.68	0.43
	M''	0	0	0	0	0	0	0.16	0.39	0.59	0.75	1.02	1.02
	dB/CM	0	0	0	0	0	0	0.09	1.3	5.0	21	32	57
	dB/IN	0	0	0	0	0	0	0.23	3.3	12.7	53	81	145
	Z /Z ₀	0.34	0.36	0.38	0.41	0.43	0.46	0.47	0.42	0.42	0.33	0.33	0.33
MF - 117	K'	195	158	120	85	62	48	38	28	22.9	21.4	21	20.6
	TAN D	0.18	0.21	0.23	0.24	0.22	0.18	0.12	0.09	0.06	0.02	0.02	0.02
	K''	35	33	28	20	14	8.6	4.8	2.5	1.4	0.42	0.42	0.41
	M'	5.0	5.0	5.0	5.0	5.0	5.0	4.8	4.1	3.4	1.2	1.1	1.0
	TAN M	0	0	0	0	0	0	0.1	0.20	0.39	1.38	1.5	2.0
	M''	0	0	0	0	0	0	0.48	0.82	1.33	1.83	1.7	2.0
	dB/CM	0	0	0	0	0	0	0.03	0.27	2.8	11	46	119
	dB/IN	0	0	0	0	0	0	0.08	0.89	7.1	28	117	302
	Z /Z ₀	0.16	0.18	0.20	0.24	0.28	0.32	0.36	0.39	0.40	0.30	0.31	0.33
MF - 124	K'	260	205	145	95	70	52	40	32	25.8	23.8	23.6	23.0
	TAN D	0.40	0.39	0.36	0.31	0.26	0.20	0.14	0.08	0.07	0.05	0.03	0.04
	K''	104	80	52	29	18	10	5.8	2.6	1.8	1.19	0.71	0.92
	M'	7.0	6.9	6.8	6.7	6.6	6.3	6.0	5.0	3.8	2.50	1.5	1.0
	TAN M	0	0	0	0	0	0	0.2	0.45	0.69	1.10	1.4	2.5
	M''	0	0	0	0	0	0	1.2	2.3	2.62	2.75	2.1	2.5
	dB/CM	0	0	0	0	0	0	0.03	0.48	6.5	20	63	149
	dB/IN	0	0	0	0	0	0	0.08	1.2	17	50	160	378
	Z /Z ₀	0.16	0.18	0.21	0.26	0.30	0.32	0.39	0.42	0.42	0.39	0.33	0.34
MF - 175	K'	320	250	170	105	78	56	42	36	27.0	25.0	24.0	24.0
	TAN D	0.50	0.49	0.46	0.41	0.36	0.26	0.16	0.06	0.05	0.03	0.02	0.02
	K''	160	123	78	43	28	15	6.7	2.2	1.35	0.75	0.48	0.48
	M'	8.0	7.9	7.8	7.7	7.6	7.3	7.0	6.0	4.40	1.80	1.3	1.1
	TAN M	0	0	0	0	0	0	0.4	0.6	0.80	1.40	1.6	3.0
	M''	0	0	0	0	0	0	2.8	3.6	3.52	2.5	2.1	3.3
	dB/CM	0	0	0	0	0.01	0.05	0.87	8.6	24	65	89	177
	dB/IN	0	0	0	0	0.03	0.13	2.2	22	61	165	175	450
	Z /Z ₀	0.15	0.17	0.20	0.26	0.30	0.36	0.42	0.44	0.46	0.35	0.32	0.38
MF - 190	K'	380	295	195	115	86	60	44	40	28.0	26.0	25.0	25.0
	TAN D	0.60	0.59	0.56	0.51	0.46	0.32	0.18	0.07	0.04	0.04	0.02	0.02
	K''	228	174	109	59	40	19	7.9	2.8	1.12	1.04	0.50	0.50
	M'	9.0	8.9	8.8	8.7	8.6	8.3	8.0	7.0	4.50	2.00	1.5	1.1
	TAN M	0	0	0	0	0	0	0.60	0.80	0.90	1.40	1.8	4.0
	M''	0	0	0	0	0	0	4.0	5.6	4.05	2.8	2.4	4.4
	dB/CM	0	0	0	0	0.01	0.06	1.3	12.6	27	70	75	217
	dB/IN	0	0	0	0	0.03	0.15	3.3	32.0	69	179	190	551
	Z /Z ₀	0.14	0.16	0.20	0.26	0.36	0.46	0.47	0.47	0.36	0.34	0.43	

Microwave Factory Co.,Ltd.

www.mwf.co.jp

▪ Head Office : Shinyokohama KS bldg 7F, 3-18-3, Shin-Yokohama, Kouhoku-ku, Yokohama-shi,

Kanagawa, 222-0033, Japan

TEL: +81-45-594-6639 FAX: +81-45-471-4798